SQL, R, Python: какой язык учить аналитику данных?

Как выяснили аналитики Яндекса, из всех сфер IT именно в Data Science сейчас больше всего ищут специалистов начального уровня. У каждой компании сегодня есть хранилища данных, с которыми очень хочется сделать что-нибудь полезное. Эксперты, способные извлечь пользу из этих гор информации, могут рассчитывать на быструю карьеру с впечатляющими окладами.

Единственная сложность для начинающих аналитиков данных — даже базовые позиции предполагают уверенное владение компьютерными языками. Как правило, в объявлениях о вакансиях упоминаются SQL, R и Python. В чем их отличия? С чего начать и чем продолжить? Нужно ли пытаться объять необъятное? Расскажем в сегодняшней статье, которая будет полезна всем, кто собирается стать веб-разработчиком, думает о карьере фронтенд-разработчика или хочет познакомиться с SQL.

Вверх по уровням

Интересное исследование на эту тему недавно провела специалистка по аналитике данных Женевьева Хейс (Genevieve Hayes). Она проанализировала 100 актуальных объявлений о работе в Data Science, подобрав компании самого разного размера с позициями самого разного уровня. Вакансии руководителей ее не интересовали, только те должности, где нужно работать «руками». В 15% случаев объявления адресовались начинающим специалистам, 44% пришлись на средние позиции, 41% — на старших экспертов.

Специализация «Frontend-разработчик»
Идет набор в группу 5900₽ в месяц

Во всех трех категориях на первом месте по популярности оказался Python. SQL занял вторую строчку, R — третью. Главный тренд, который отметила Хейс — это падение позиций SQL с повышением позиции сотрудника. Среди вакансий для начинающих сотрудников этот язык упоминался в 73% случаев, а в самой опытной категории цифра упала до 45%.

Популярность основных языков программирования на разных уровнях экспертизы (Genevieve Hayes, 2019)

Эти результаты говорят о том, что начинающие специалисты должны знать, как сформулировать запрос базе и интерпретировать ответ, понимать принципы обмена данных между хранилищами и т.д. Очевидно, те компании, которые в исследовании Яндекса активно ищут младших экспертов по Data Science, во многом преследуют именно эти цели — наладить грамотную работу с базами, а дальше действовать по ситуации.

С другой стороны, R и Python позволяют работать с данными глубже, чем на уровне базовых запросов и операций. В серьезном статанализе и машинном обучении без этих языков делать нечего — поэтому с повышением должности эксперта от него ждут сильных навыков в этой области.

Специализация «Backend-разработчик»
Идет набор в группу 7 400₽ в месяц

Тех, кто хочет стать веб-разработчиком с нуля, знание SQL дает отличное понимание работы с бэкендом. Python, в свою очередь, объединяет множество удобных инструментов веб-разработки, позволяющих быстро разворачивать функциональные сайты и мощные порталы. Наконец, R применяется для узких задач — у этого языка довольно специфичная природа, о которой мы расскажем подробнее ниже.

Сужаем выбор

Итак, именно R и Python можно считать главными языками для эксперта по Data Science. Настоящий профессионал сможет работать и с тем, и с другим, но нужно ли новичку браться сразу за все? Или лучше планировать свой путь постепенно, двигаясь от точки А к точке Б?

Исследование Хейс показало, что вне зависимости от уровня сотрудника, главное требование — это знание Python. Это и неудивительно, ведь этот язык достаточно доступен для понимания новичков и невероятно функционален для применения в самых сложных рабочих задачах. Именно поэтому начинающим специалистам стоит начать именно с него, тем более что Python из года в год получает звание лучшего языка для первого знакомства с программированием.

Когда молодой аналитик овладеет базовым набором операций и поймет общую логику работы с данными, ему будет проще перенести ее на другой инструментарий. Так постепенно можно расширять свои компетенции, причем каждый новый язык будет даваться все легче.

R и Python: лицом к лицу

Чтобы разобраться со многими вопросами выбора, стоит получше разобраться, что из себя представляют главные рабочие лошадки аналитика. У R и Python много общего, а различия в деталях и определяют специфику каждого языка.

Появление Python и R разделяет два года — первый увидел свет в 1991 году, второй в 1993-м. Оба языка создавались с таким расчетом, чтобы будущие разработчики могли расширять набор их функций с помощью подключаемых библиотек. С этим связано и использование открытого кода — ничто не мешает энтузиастам развивать, дополнять, достраивать и перестраивать.

Главная аудитория Python — это разработчики ПО и веб-разработчики. Именно для этих экспертов создается большинство функциональных модулей, позволяющих загружать данные, проводить с ними сложные операции, моделировать и анализировать. Чтобы стать хорошим веб-разработчиком достаточно собрать набор из десятка библиотек, с помощью которых можно закрыть основной круг базовых задач при сайтостроительстве.

С другой стороны, R вырос из языка S, с которым активно работают специалисты по статистике. Таким образом, его главная сила в сложных статистических функциях, которые используются в академических и высокопрофессиональных задачах.

С точки зрения аналитиков данных и экспертов по Data Science R и Python обладают схожими возможностями. Первый язык чаще выбирают специалисты, которым нужно работать с огромными массивами информации, на втором останавливаются создатели нейросетей и экспериментаторы в области машинного обучения. Следовательно, если вы уже знаете, какая область вам более интересна, вы можете планировать свое профессиональное образование.

Текст: Помогаев Дмитрий

Поделиться:
Опубликовано в рубрике Python, Анализ данныхTagged , ,

SkillFactory.Рассылка