Сейчас на слуху «творчество нейросетей»: сгенерированные машиной тексты и стихи, несуществующие картины и фотографии людей, почти похожие на настоящие. Для человека вне IT это выглядит как чудо. Но на самом деле нейронные сети хорошо объясняются математически, хотя результат их работы действительно невозможно предсказать.
Что такое нейросети?
Нейросети — математические модели и их программное воплощение, основанные на строении человеческой нервной системы. Самую простую нейронную сеть, перцептрон (модель восприятия информации мозгом), вы сможете легко самостоятельно написать и запустить на своем компьютере, не используя сторонние мощности и дополнительные устройства.
Пройдите наш тест и узнайте, какой контент подготовил искусственный интеллект, а какой — реальный человек.
Чтобы лучше понять, что это такое, попробуем сначала разобраться, как работают биологические нейронные сети — те, что находятся внутри нашего организма. Именно они стали прообразом для машинных нейронных сетей.
Биологические нейронные сети. Нервная система живого существа состоит из нейронов — клеток, которые накапливают и передают информацию в виде электрических и химических импульсов. У нейронов есть аксон — основная часть клетки, и дендрит — длинный отросток на ее конце, который может достигать сантиметра в длину. Дендриты передают информацию с одной клетки на другую и работают как «провода» для нервных импульсов. С помощью специальных шипов они цепляются за другие нейроны, и так сигналы передаются по всей нервной системе.
В качестве примера можно привести любое осознанное действие. Например, человек решает поднять руку: импульс сначала появляется в его мозгу, потом через сеть нейронов информация передается от одной клетки к другой. По пути она преобразуется и в конечном итоге достигает клеток в руке. Рука поднимается. Так работает большинство процессов в организме — тех, которые управляются мозгом.
Но главная особенность нейронных сетей — способность обучаться. И именно она легла в основу машинных нейросетей.
Первые машинные нейросети. В сороковых годах прошлого века люди впервые попытались описать сеть нейронов математически. Затем, в пятидесятых, — воссоздать ее модель с помощью кода. Получилась та самая структура, которую назвали перцептрон. На графиках и иллюстрациях ее обычно рисуют как набор кругов и прямых, их соединяющих — это и есть нейроны, образующие сетку.
Перцептрон был проще современных нейросетей. Он имел всего один слой и три типа элементов: первый тип принимал информацию, второй обрабатывал и создавал ассоциативные связи, третий выдавал результат.
Но даже элементарная структура уже могла обучаться и более-менее точно решать простые задачи. Например, перцептрон мог ответить, есть ли на картинке предмет, который его научили распознавать. Он был способен отвечать только на вопросы, где есть два варианта ответов: «да» и «нет».
После этого развитие нейросетей замедлилось. Существующих на тот момент технологий было недостаточно, чтобы создать мощную систему. Наработки шли неторопливо, но чем больше развивалась компьютерная отрасль, тем больше интереса вызывал концепт.
Современные нейронные сети. Когда компьютеры развились до современных мощностей, концепция нейронной сети снова стала привлекательной. К тому моменту ученые успели описать много алгоритмов, которые помогали распространять информацию по нейронам, и предложили несколько структур. Это были как однослойные, так и многослойные сети, однонаправленные и рекуррентные — подробнее мы расскажем о классификации далее.
Чем более продвинутыми становились компьютеры, тем больше сложных и интересных задач могли реализовать нейронные сети. Мощность системы играет важную роль, т.к. каждый нейрон постоянно выполняет ресурсоемкие вычисления. Чтобы решить сложную задачу, обычно нужно много нейронов, их масштабная структура и множество математических функций. Понятно, что для этого понадобится очень сильный компьютер.
Как работает нейросеть?
Структуру нейрона воссоздают при помощи кода. В качестве «аксона» используется ячейка, которая хранит в себе ограниченный диапазон значений. Информация о как бы «нервных импульсах» хранится в виде математических формул и чисел.
Связи между нейронами тоже реализованы программно. Один из них передает другому на вход какую-либо вычисленную информацию, тот получает ее, обрабатывает, и затем передает результат уже своих вычислений дальше. Таким образом, информация распространяется по сети, коэффициенты внутри нейронов меняются — происходит процесс обучения.
Как работает обучение?
Предоставление информации. Когда нейросеть обучают, ей «показывают» данные, по которым необходимо что-то предсказать, и эталонные правильные ответы для них — это называется обучающей выборкой. Информации должно быть много — считается, что минимум в десять раз больше, чем количество нейронов в сети.
Во время обучения нейросети показывают какую-либо информацию и говорят, что это такое, т.е. дают ответ. Все данные представляются не посредством слов, а с помощью формул и числовых коэффициентов. Например, изображению женщины соответствует «1», а изображению мужчины — «0». Это простой пример; реальные сети устроены сложнее.
Преобразования. Входные нейроны получают информацию, преобразуют ее и передают дальше. Содержание информации автоматически обрабатывается с помощью формул и превращается в математические коэффициенты. Примерно как то, что мы видим глазами, превращается в нервные импульсы и передается в мозг. Он их обрабатывает, и человек понимает, что находится вокруг него. Здесь принцип похож.
Обработка и выводы. У каждого нейрона есть «вес» — число внутри него, рассчитанное по особым алгоритмам. Он показывает, насколько показания нейрона значимы для всей сети. Соответственно, во время обучения веса нейронов автоматически меняются и балансируются.
В результате складывается ситуация, когда определенные нейроны реагируют, например, на силуэт человека — и выдают информацию, которая преобразуется в ответ: «Это человек». При этом человека не нужно описывать как набор математических фигур — во время обучения нейронная сеть сама задает значения весов, которые определяют его.
Результат. Выводом нейронной сети становится набор формул и чисел, которые преобразуются в ответ. Например, если изображение мужчины — «0», а женщины — «1», то результат 0,67 будет означать что-то вроде «Скорее всего, это женщина». Нейросеть из-за своей структуры не может дать абсолютно точный ответ — только вероятность. И из-за закрытости и нестабильности нейронов ее показания могут различаться даже для одинаковых выборок.
Особенности нейронных сетей
Из архитектуры и режима работы нейросети следует несколько особенностей, ключевых для понимания направления.
Нейросети закрыты. Мы не можем сказать, по каким критериям программа «решает», что на картинке изображен человек или что текст является стихотворением. Все это происходит автоматически; задача разработчика — правильно описать структуру и задать формулы. Примерно так же мы не можем достоверно сказать, что именно происходит в человеческом мозгу, почему он понимает, что собака — это собака, даже если впервые видит незнакомую породу. Если у собаки не будет хвоста, она окажется бесшерстной или покрашенной в неестественный цвет, мы все равно определим ее как собаку — по ряду характеристик, которые до конца не осознаем сами.
Нейроны в сетях независимы. Каждый нейрон никак не связан с процессом работы других. Да, они получают друг от друга информацию, но их внутренняя деятельность не зависит от других элементов. Поэтому даже если один нейрон выйдет из строя, другой продолжит работать — это важно в вопросе отказоустойчивости. Подобная устойчивость свойственна и биологическим нейронным сетям, которые продолжают работать, даже если оказываются повреждены.
Но у независимости есть и недостаток: из-за нее решения оказываются многоступенчатыми и порой хаотичными, их сложно предсказать и повлиять на них.
Нейросети очень гибкие. Так как нейроны сами подбирают критерии и не зависят друг от друга, нейросети более гибкие, чем другие модели машинного обучения. Их архитектура унаследовала важные свойства биологической нервной системы: способность самообучаться и приспосабливаться к новым данным, возможность игнорировать «шумы» и неважные детали входной информации. Как живой человек сможет различить знакомого в толпе, так нейросеть можно научить выделять нужное и отбрасывать ненужное.
Гибкость проявляется не только в этом. Нейросети способны решать широкий спектр задач, и их можно адаптировать практически под любые обстоятельства.
Нейросети приблизительны. Мы уже говорили: любой результат, выданный нейронной сетью, приблизителен и неточен. Например, сеть, которая распознает картинки, может сказать «Здесь изображена корова» только с определенной вероятностью. И эта вероятность всегда будет меньше единицы, то есть ниже ста процентов. Более того: если два раза показать нейросети одну и ту же картинку, она может выдать разные вероятности в качестве ответа. Различаться они, конечно, будут на сотые и тысячные доли, но это все же неодинаковый, недетерминированный результат.
Нейросети могут ошибаться. Любой искусственный интеллект уступает человеческому. Это происходит из-за того, что мощности нашего мозга до сих пор невозможно повторить. В теле человека 86 миллиардов нейронов, и еще не создана сеть, которая хотя бы немного приблизилась к этому числу. В современных нейросетях содержится примерно 10 миллиардов нейронов. Даже при наличии продвинутых формул искусственная нейросеть все равно остается упрощенной моделью — например, в ней нет понятия силы импульса, которое есть в биологических нервах.
У биологических нейронных сетей, конечно, тоже бывают ошибки. Но для нейросетей они проявляются более ярко за счет их упрощенной структуры.
Читайте также: Искусственный интеллект против сценаристов: как нейросети создают истории
Ошибки нейросетей: какими они бывают
Существует три основных проблемы работы с сетями — это явления забывчивости и переобучения, а также непредсказуемость. В биологических нейронных сетях они тоже есть, но мы их корректируем. В искусственных нейросетях аналогично применяются методы корректировки, но это сложнее и не всегда может быть эффективно.
Забывчивость. Представьте, что вы попали сразу в несколько незнакомых ситуаций, опыта для которых ранее не было. Скорее всего, вам будет тяжело эффективно работать. Даже простые, но отличающиеся действия будут вызывать стресс, вы будете допускать больше ошибок.
В теории нейронных сетей это называется забывчивостью: программы плохо реагируют на большое разнообразие ситуаций. Если обстоятельства все время меняются, нейросеть будет пытаться подстроиться под каждое из них, и в результате точность решений упадет. Но если человек еще может сориентироваться в незнакомой обстановке, то программе это сделать сложнее, ведь она — «вещь в себе», лишенная нейропластичности.
Переобучение. Это явление, когда модель хорошо объясняет только примеры из обучающей выборки, адаптируясь к примерам оттуда, вместо того, чтобы учиться классифицировать что-то другое, не участвующее в обучении. Если вы когда-нибудь смотрели на автомобиль и видели, что фары похожи на глаза, а решетка радиатора — на рот, вы понимаете, как это работает. Нейросеть точно так же начинает путаться.
Но ресурсов человеческого мозга хватает, чтобы понять, что машина — не настоящее лицо. Программа понять это не может и в подобной ситуации способна действительно выдать результат, что на картинке изображен человек.
Еще один пример переобучения можно привести для сетей, которые создают что-то новое, например стиль. Вы, наверное, замечали, что у реальных художников и писателей есть свои характерные приемы, а их произведения со временем становятся все более похожими друг на друга. Это тоже пример переобучения — и генерирующие контент нейросети также ему подвержены.
Непредсказуемость. Это прямое следствие закрытости и автономности нейронов. Сложно предугадать результат работы нейросети, будет ли она корректно работать в решении той или иной задачи. И если с предыдущими ошибками можно бороться благодаря правильным алгоритмам обучения, то непредсказуемость не пропадает. Это не стандартная программа, которая выдает известный результат для каждой ситуации.
С непредсказуемостью тоже борются: точность можно повысить, если использовать подходящую архитектуру. Не обязательно более сложную — с некоторыми задачами хорошо справляются, наоборот, более простые сети. Но это дополнительно усложняет работу над нейросетями, особенно когда результат работы критичен.
Для чего нужны нейронные сети?
Нейросети используются в огромном количестве сфер, в первую очередь в тех, где от машины нужна функциональность сродни человеческой. То есть в ситуациях, где нет четко заданного скрипта, описывающего каждый конкретный случай; входные данные могут быть любыми, поэтому нужно уметь обрабатывать все возможные варианты. Хороший пример — робот-ассистент или подсказки в поле поиска. В свое время именно поисковые системы дали толчок развитию методов искусственного интеллекта.
Пока с нейронными сетями работают в основном большие компании и холдинги. Для того чтобы создать нейросеть, способную достаточно грамотно работать в сложных условиях, нужны мощные машины и большие наборы обучающих данных. Такие ресурсы могут себе позволить только крупные корпорации.
Еще есть стартапы — они в основном работают на арендованных мощностях и концентрируются на создании нейросети под конкретные задачи. Пример — знаменитое приложение Prisma.
Отрасль может быть любой. Во всех сферах есть задачи, которые в силах решить нейросеть. Рассмотрим основные области задач, для решения которых используются нейросети.
Классификация. Нейросеть получает объект и относит его к определенному классу. Самая первая сеть, перцептрон, решала именно задачи классификации, но очень простые. Сейчас возможности шире: сети могут классифицировать клиентов и выделять аудитории по интересам — вы сталкиваетесь с этой возможностью каждый день, когда ваш электронный почтовый ящик определяет (классифицирует) некоторые письма как спам. Но это не единственный пример: автоматический скоринг в банках, контекстная реклама — это все касается классификации.
Распознавание. Задача поставлена иначе: она не в том, чтобы отнести объект к одному из классов, а в том, чтобы найти нужное среди множества данных — например, лицо на картинке. «Умные» фильтры для фотографий работают именно так. Можно вспомнить многочисленные нейросети, которые превращают фотографии в картины маслом или постеры, — они тоже сначала распознают, что находится на изображении. Распознавать можно и текстовые данные, например приложения для определения названия музыкальных треков.
Но распознавание — это не только приложения. Это и поиск по картинке, и чтение текста с изображения, и работа «умных» камер слежения. Разнообразные программы для людей с ограниченными возможностями тоже используют возможности распознавания. Сюда же относятся голосовые ассистенты, которые распознают речь. Сейчас нейросети начинают активно применяться в медицине, например распознают информацию на снимках, что облегчает диагностику.
Прогнозирование. Третий вариант — нейросети, которые получают входные данные и на их основе что-то предсказывают. Их часто применяют в аналитике, например в финансовом секторе такая сеть может предсказывать поведение рынка, а в маркетинге — тренды и аудитории.
Нейросетевые программы, которые дописывают текст или дорисовывают изображение, тоже по сути занимаются прогнозированием. Так же работают поисковые системы: вы начинаете вводить фразу, а вам предлагают ее завершение. Это тоже задача прогнозирования, причем интересная — с учетом смысла предыдущих слов.
Генерация. Нейронные сети могут сами генерировать контент. Пока он далек от идеального, но программы становятся умнее. Сейчас нейросети могут писать музыку, создавать изображения, и со временем они становятся все больше похожими на настоящие. Это комплексная задача, которая может состоять из нескольких предыдущих. Например, «дорисовка» человека на фотографии — задача распознавания и прогнозирования одновременно. Генерация текста в определенном стиле — классификация плюс прогнозирование.
Какими бывают нейронные сети?
У нейросетей есть общие черты — например, наличие входного слоя, который принимает информацию на вход. Но много и различий. Для каждой из перечисленных выше задач потребуется своя нейронная сеть. У них будут различаться структуры, архитектура, типы нейронов и многое другое. Создать универсальный алгоритм невозможно, по крайней мере пока, поэтому сети отдельно оптимизируют под определенные спектры задач.
Однонаправленные. Нейросети работают в одном направлении — как оригинальный перцептрон. Это значит, что у них нет «памяти», а поток информации передается только в одну сторону. Структура выходит более простой, чем в случае с рекуррентными сетями, о которых мы поговорим ниже. Но это не плохо: для решения некоторых задач простые структуры подходят лучше.
Однонаправленные сети хорошо подходят для задач распознавания. Суть примерно та же, что и в случае с восприятием окружающего мира реальным мозгом. Органы чувств получают информацию и передают ее в одном направлении, та в процессе трансформируется и распознается. Мозг делает вывод: «я вижу собаку», «слышна рок-музыка», «на улице холодно». Однонаправленная модель работает по тому же принципу, но более упрощенно.
Еще один вариант применения — прогнозирование. Принцип такой же: «На улице тучи — значит, пойдет дождь». Но критерии, по которым нейросети делают выводы, до конца непонятны.
Рекуррентные. У этих сетей есть эффект «памяти» благодаря тому, что данные передаются в двух направлениях, а не в одном. В результате они воспринимают предыдущую полученную информацию и могут глубже ее «анализировать». Это полезно, если перед сетью стоит сложная задача вроде перевода текста. Однонаправленная нейросеть переведет каждое слово по отдельности, и получится бессвязная «каша». Рекуррентная сможет учесть контекст и перевести, например, apple tree не как «яблоко дерево», а как «яблоня».
Или более сложный пример: идиома that’s a piece of cake в контексте переведется не как «это кусок торта», а как «проще простого» в зависимости от стиля текста. На это сейчас способны не все переводчики.
Задачи для рекуррентной сети можно сформулировать так: это работа с большим объемом данных, которые надо разбить на более мелкие и обработать. Причем с учетом связей между друг другом.
Правильно настроенная рекуррентная нейронная сеть способна отличать контекст одной ситуации от другой. Это важно, например, при создании «говорящих» ботов: вспомните, как «обижаются» голосовые помощники, если сказать им что-то грубое.
Сверточные. Это отдельная категория нейронных сетей, менее закрытая, чем другие, благодаря принципиальной многослойности. Многослойными называются нейронные сети, в которых нейроны сгруппированы в слои. При этом каждый нейрон предыдущего слоя связан со всеми нейронами следующего слоя, а внутри слоев связи между нейронами отсутствуют. Сверточные сети используют для распознавания образов. У них особая структура слоев: часть занимается «свертыванием», преобразованием картинки, а часть — группировкой и распознаванием маленьких дискретных элементов, созданных на сверточных слоях. Таких слоев несколько. Результат — более высокая точность и качественное восприятие информации.
Интересный факт: как обычные нейросети были основаны на нейронах в головном мозгу, так сверточные — на структуре зрительной коры. Это та часть мозга, которая отвечает за восприятие картинок. В ней чередуются «простые» и «сложные» клетки: первые реагируют на определенные линии и очертания, вторые — на активацию конкретных простых клеток. Так происходит процесс распознавания образов в мозгу, и примерно так же устроена сверточная нейросеть.
Сверточные слои «воспринимают» отдельные элементы картинки как простые клетки — линии. Особые слои, называемые субдискретизирующими, реагируют на конкретные найденные элементы. Чем больше слоев, тем более абстрактные детали способна заметить и определить сеть.
На результат работы промежуточных слоев можно посмотреть, если заглянуть в файлы нейросети. Поэтому она и считается менее закрытой. Результат больше всего напоминает карту признаков из машинного обучения.
Нейронные сети — это машинное обучение?
Не совсем. Нейронные сети относят к глубокому обучению (Deep Learning), которое является частью машинного, но от классического ML подход сильно отличается. В стандартном машинном обучении программе предварительно рассказывают, как выглядит то, что она должна сделать. Например, если нужно отличить мужчину от женщины, потребуется «объяснить» модели, в чем принципиальные различия между фигурами. Это делается с помощью математических формул и абстракций, которые будут описывать параметры. Выше мы говорили про понятие карты признаков — по сути, это она и есть.
При обучении нейросети такой задачи не стоит. Признаки сеть находит сама, их не нужно описывать. Необходимо только задать коэффициенты и результаты, соответствующие каждому возможному исходу.
Это и хорошо, и плохо. Плохо — потому что приводит к уже описанной выше непредсказуемости. Хорошо — потому что дает больше гибкости: два необученных исходника одной и той же сети можно обучить на выполнение двух разных задач. Не понадобится писать другой алгоритм и задавать новые параметры. Можно оставить ту же архитектуру, главное — чтобы она изначально была оптимальной для этого типа задач.
То есть нейронная сеть может заменить человека?
Нейросети действительно используются для решения задач, похожих на те, которые решает человеческий мозг.
Но даже мощная нейросеть может ошибиться. И в некоторых случаях цена этой ошибки может быть крайне велика, а ее вероятность намного больше, чем если задачу решает человек. Поэтому сейчас нейронные сети используются скорее для ассистирования, чем для полномасштабной самостоятельной работы.
Существуют проблемы, в решении которых машины действительно могут заменить человека. Это некоторые аналитические задачи, а также те, которые связаны с более-менее однообразными действиями. Например, с помощью нейросети может работать робот-почтальон.
Но далеко не все задачи можно решить вот так. Например, робот может ответить на более менее стандартные вопросы в банковском приложении, но не поймет, что делать, если человек задаст что-то неочевидное.
Примеры популярных нейронных сетей
Нейросеть | Описание |
---|---|
Convolutional Neural Network (CNN) | Используется для обработки изображений и распознавания паттернов в них. Применяется в компьютерном зрении. |
Recurrent Neural Network (RNN) | Подходит для работы с последовательными данными, такими как текст и аудио. Применяется в языковых моделях. |
Generative Adversarial Network (GAN) | Используется для генерации новых данных, таких как изображения и звуки. Применяется в синтезе контента. |
Transformer | Базовая архитектура для моделей обработки естественного языка, таких как BERT и GPT. |
Deep Q-Network (DQN) | Применяется в обучении с подкреплением для игр и задач управления. |
U-Net | Широко используется в сегментации изображений, включая медицинское изображение. |
YOLO (You Only Look Once) | Одна из популярных архитектур для реального времени обнаружения объектов на изображении. |
ResNet | Известная архитектура с нейронными блоками остаточных связей, обычно используется для классификации. |
ChatGPT | Мощная языковая модель, разработанная OpenAI. Основана на архитектуре GPT (Generative Pre-trained Transformer). ChatGPT способна генерировать тексты и поддерживать разговоры с пользователем, делая ее популярным инструментом для задач генерации текста и чат-ботов. |
А что с творчеством нейронных сетей?
Нейросеть не осознает свои действия. Даже если она генерирует контент — она делает это машинально, на основе предыдущих данных, а не благодаря собственному мышлению. Вряд ли нейронная сеть, даже сложная, сможет догадаться, что созданное ей предложение абсурдно и не имеет смысла. Для нее нет такого понятия, как «смысл». Творчество нейросетей — примерно как «речь» говорящего попугая или «китайская комната».
Поэтому есть мнение, что книга или картина, написанные нейросетью, не смогут заменить человеческие, даже если алгоритмы будут очень хорошо имитировать наше творчество. Вряд ли много кто захочет читать книгу, если точно известно, что автор не вкладывал туда никаких мыслей.
Правда, пока создавать с нуля контент, похожий на настоящий, могут немногие системы. Но вы можете внести свой вклад в их развитие — если освоите, как они работают. Сейчас это направление востребовано как никогда.