Баннер мобильный (3) Пройти тест

5 причин, почему пора перестать пользоваться Excel и перейти на Python

И с каких команд начать

Разбор

29 февраля 2024

Поделиться

Скопировано
5 причин, почему пора перестать пользоваться Excel и перейти на Python

Содержание

    Многие пользуются Excel для анализа данных, но Python лучше подойдет для решения аналитических задач: в нем можно работать с неограниченным количеством данных и написать пару строк кода для сложной операции. Перевели статью Stop Using Excel for Data Analytics: Upgrade to Python Тайлера Фолкмана, руководителя направления ИИ в Branded Entertainment Network, в которой он объясняет, почему стоит перейти на Python.

    Да, Excel — важный инструмент для компаний. До сих пор им пользуются аналитики и ученые. Но для большинства задач он не подходит. Вот пять причин, почему пора перестать использовать Excel и перейти на Python.

    Причина 1. Масштабирование и автоматизация

    Excel хорош, когда нужно за раз проанализировать небольшое количество данных. Но для масштабных вычислений он не подходит. Excel поддерживает данные размером до 1 048 576 строк и до 16 384 столбцов.

    Python может масштабироваться до объема памяти. Кроме того, у него есть много инструментов, поддерживающих вычисления и вне памяти устройства. Например, с помощью библиотеки Dask можно масштабировать вычисления для работы на внешнем кластере, а не только на ноутбуке. Если вы уже работали с Pandas (библиотекой для анализа и обработки данных), то тут используется почти такой же код для чтения в формате CSV:

    Всего одна строка кода, и вы можете прочесть данные, объем которых превышает размер памяти компьютера. В Excel это сделать невозможно.

    Кроме того, Python можно использовать для работы с несколькими источниками данных. Если Excel — это одновременно и хранилище, и вычислительный механизм, то Python полностью независим. Если вы можете найти способ прочитать данные в Python, вы сможете их использовать. У Python много библиотек, поэтому можно анализировать данные из разных источников, будь то CSV, Excel, JSON или SQL.

    Наконец, Python незаменим при автоматизации. Этот язык программирования позволяет напрямую подключаться к базе данных и выполнять обновления автоматически. С его помощью можно проводить расчеты, создавать отчеты или динамические дашборды, экономя массу времени. В Excel многое надо вводить вручную, а обновления нельзя автоматизировать.

    image2-92
    Python может напрямую подключаться к базе данных для автоматических обновлений. Источник: NobleDesktop

    Читайте также: Кому и для чего нужен Python?

    Причина 2. Воспроизводимость

    Воспроизводимость — это когда вашу аналитику или визуальный отчет легко может повторить другой человек. Он должен суметь не только перезапустить процессы и получить точно такой же результат, но и пройти те же самые шаги. Воспроизводимость важна при автоматизации, но настроить ее в Excel сложно.

    Дело в том, что расчеты в ячейках Excel практически невозможно проверить по любой шкале измерений. Типы данных сбивают с толку — не всегда то, что вы видите, представлено в необработанных данных. Да, в Excel можно использовать VBA (Visual Basic for Applications) и он немного улучшает воспроизводимость.

    VBA — это язык программирования, разработанный Microsoft и предназначенный для работы с пакетами Microsoft Office. Он позволяет писать программы прямо в файле и создавать макросы — набор команд для автоматического выполнения задач. При этом не нужно устанавливать среду для разработки — она уже есть в самом Excel.

    Но лучше все же потратить время на изучение Python.

    Посмотрите на этот документ в Excel:

    image3-75

    В столбце с sum должна отображаться сумма чисел из столбцов A и B, но как это проверить? Вы можете проверить одну из формул и увидеть, что это на самом деле сумма, но поскольку каждая ячейка тоже может быть формулой, то результат неверный. Если не проверять все вручную, то можно пропустить ошибки.

    А в Python эти расчеты выглядели бы так:

    Код простой и понятный, с его помощью можно легко проверить, что сумма рассчитана правильно.

    C Python вы получаете все инструменты, предназначенные для того, чтобы улучшить воспроизводимость и совместную работу программистов.

    Вдобавок ко всему, Python превосходит возможности подключения к данным. С его помощью можно анализировать данные в облаке и мгновенно повторять этот процесс. Git (распределенная система управления версиями), модульное тестирование, документация и стандарты форматирования кода широко распространены в сообществе Python.

    В третьей версии Python можно добавить статическую типизацию, чтобы сделать ваш код более понятным. Все эти инструменты упрощают процесс создания кода и обеспечивают его правильное написание. В следующий раз, когда кто-то будет смотреть ваш код, он сможет легко его понять и воспроизвести.

    Причина 3. Гибкость навыков

    Если вы знаете Excel, это, безусловно, полезный навык, но больше его применить негде. Python же многофункционален. Это не только удобный инструмент для анализа и визуализации данных, но и язык программирования, который можно использовать для чего угодно. Хотите заниматься машинным или глубоким обучением? Создать сайт? Автоматизировать умный дом? Все это можно сделать с помощью Python.

    Кроме того, Python намного ближе к другим языкам программирования, чем Excel. Поэтому, зная Python, гораздо легче изучить другие языки. Он открывает больше возможностей, чем Excel.

    И, наконец, Python невероятно востребован. По данным Stack Overflow, в 2019 году он стал четвертым по популярности языком программирования в мире среди профессиональных разработчиков ПО, а также первым наиболее востребованным языком программирования. (По данным Stack Overflow на май 2021 года, Python — третий по популярности язык программирования после JavaScript и HTML/CSS.) По оценкам американского сервиса по поиску работы Indeed, средняя зарплата разработчика на Python в США в 2020 году составляла 120 тысяч долларов в год. Неплохо.

    Причина 4. Продвинутые инструменты

    В Excel есть множество встроенных формул, но они меркнут по сравнению с возможностями Python. У Python не только сотни библиотек, помогающих упростить расширенную статистику и аналитику, но и продвинутые инструменты для визуализации данных.

    Это, например, библиотека Matplotlib, Plotly, фреймворк Streamlit и библиотека для статистических графиков Seaborn (все это — инструменты для визуализации данных). С их помощью вы можете прекрасно визуализировать данные, а также создавать интерактивные информационные панели и графики.

    Библиотеки Numpy и SciPy поддерживают научные и векторизованные вычисления, линейную алгебру. Библиотека Scikit-learn позволяет применять различные алгоритмы машинного обучения: от дерева принятия решений до градиентного бустинга. Я думаю, xkcd сказал об этом лучше всего:

    image1-106
    — Ты летишь, как тебе это удалось?
    — Python. Я узнал его вчера вечером! Все так просто! Чтобы запустить программу Hello world, нужно просто напечатать фразу “Hello, world!”.
    — Я не знаю… Динамический набор текста? Пробел?
    — Присоединяйся к нам! Программирование — это весело! Это совершенно новый мир!
    — Но как ты летаешь?
    — Я только что набрал import antigravity (импортировать антигравитацию).
    — И это все?
    — Я также для сравнения попробовал все, что было в аптечке. Но, думаю, причина все же в Python.

    Причина 5. Python легко выучить

    Учитывая все преимущества Python над Excel, кажется, что он должен быть очень сложным. Но это не так. Посмотрите, как на Java выглядит самая простая программа Hello World:

    На Python она займет всего одну строку:

    Python — один из самых интуитивно понятных языков программирования. Его могут освоить даже те, у кого нет опыта в написании кода. Хотя обучение Excel может оказаться предпочтительнее, выгоды от него гораздо меньше. Python стоит потраченного времени и усилий, и Excel никогда не сможет с ним сравниться из-за универсальности его дизайна. Расскажем немного про основы анализа и визуализации данных в Python.

    Как начать использовать Python для анализа данных

    Изучим основные команды и операции в Python, которые потребуются при анализе данных. Первый нюанс — Python использует пробелы и не использует точку с запятой, как и другие языки. Вот очень простой пример:

    Импорт функций

    Мы будем использовать множество библиотек. Некоторые из них предустановлены вместе с Python, а другие придется поставить самостоятельно. Чтобы загрузить библиотеку, используйте оператор импорта (import statement):

    Эта команда импортирует класс Counter (счетчик) из библиотеки collections. Counter — полезный инструмент для дата-аналитиков. Он помогает подсчитать, сколько раз элементы появляются в коллекциях, например в списках. Ниже мы написали код, в котором создали список брачных возрастов. Используя Counter, мы можем быстро подсчитать, сколько раз появляется каждый возраст.

    Списки на Python

    Списки — это полезная структура данных, предназначенная для их хранения. Подробнее изучим их в следующем уроке. Например:

    Видно, что мы создали список, содержащий возраст вступления в брак, используя [ ] во второй строке. Затем передали этот список в функцию Counter, чтобы вывести наиболее распространенные значения в виде списка кортежей (tuple).

    Кортеж — это неизменяемый список внутри круглых скобок (). Кортежи содержат два элемента: значение и количество раз, когда это значение появлялось в вашем списке. Частота упорядочивает список кортежей. Первым отображается значение с наибольшим числом случаев.

    Функции в Python

    Функции в Python тоже полезны. Они начинаются с ключевого слова def и названия функции, затем добавляются аргументы в скобках. Вот функция, которая принимает 2 аргумента, x и y, и возвращает sum:

    Функции также могут быть анонимными — в них не нужно расписывать всю структуру, указанную выше. Вместо этого можно использовать ключевое слово lambda. Вот та же функция, что и выше, но записанная как анонимная:

    Итоги

    Пришло время перейти на Python. Больше нет оправданий! Я надеюсь, что эта статья помогла увидеть все преимущества Python и развеять сомнения.

    Разбор

    Поделиться

    Скопировано
    0 комментариев
    Комментарии