Big Data: что это и где применяется?

Что такое большие данные и как на них зарабатывают компании и аналитики

Почему все вокруг говорят про большие данные? Какие именно данные считаются большими? Где их искать, зачем они нужны, как на них заработать? Объясняем простыми словами вместе с экспертом SkillFactory — ведущим автором трека по машинному обучению в DS Акселераторе, а также старшим аналитиком в «КиноПоиске» Александром Кондрашкиным.

Что такое Big Data

Big Data (большие данные) — огромные наборы разнообразных данных. Огромные, потому что их объемы такие, что простой компьютер не справится с их обработкой, а разнообразные — потому что эти данные разного формата, неструктурированные и содержат ошибки. Большие данные быстро накапливаются и используются для разных целей.

Big Data — это не обычная база данных, даже если она очень большая. Вот отличия:

Не большие данныеБольшие данные
База записей о тысячах работников корпорации. Информация в такой базе имеет заранее известные характеристики и свойства, ее можно представить в виде таблицы, как в Excel.Журнал действий сотрудников. Например, все данные, которые создает во время работы колл-центр, где работает 500 человек.
Информация об именах, возрасте и семейном положении всех 2,5 миллиардов пользователей Facebook — это всего лишь очень большая база данных.Переходы по ссылкам, отправленные и полученные сообщения, лайки и репосты, движения мыши или касания экранов смартфонов всех пользователей Facebook.
Архив записей городских камер видеонаблюдения.Данные системы видеофиксации нарушений правил дорожного движения с информацией о дорожной ситуации и номерах автомобилей нарушителей; информация о пассажирах метро, полученная с помощью системы распознавания лиц, и о том, кто из них числится в розыске.

Объем информации в мире увеличивается ежесекундно, и то, что считали большими данными десятилетие назад, теперь умещается на жесткий диск домашнего компьютера.

Погрузка жесткого диска компании IBM, 1954 год

60 лет назад жесткий диск на 5 мегабайт был в два раза больше холодильника и весил около тонны. Современный жесткий диск в любом компьютере вмещает до полутора десятков терабайт (1 терабайт равен 1 млн мегабайт) и по размерам меньше обычной книги.

В 2021 году большие данные измеряют в петабайтах. Один петабайт равен миллиону гигабайт. Трехчасовой фильм в формате 4K «весит» 60‒90 гигабайт, а весь YouTube — 5 петабайт или 67 тысяч таких фильмов. 1 млн петабайт — это 1 зеттабайт.

Курс

Data Scientist с нуля

Cтаньте дата-сайентистом и приручите большие данные. Вы  научитесь выявлять закономерности в данных и создавать модели для решения реальных бизнес-задач. Скидка 5% по промокоду BLOG.

Узнать больше

Как работает технология Big Data?

Источники сбора больших данных делятся на три типа:

  • социальные;
  • машинные;
  • транзакционные.

Все, что человек делает в сети, — источник социальных больших данных. Каждую секунду пользователи загружают в Instagram 1 тыс. фото и отправляют более 3 млн электронных писем. Ежесекундный личный вклад каждого человека — в среднем 1,7 мегабайта.

Другие примеры социальных источников Big Data — статистики стран и городов, данные о перемещениях людей, регистрации смертей и рождений и медицинские записи.

Большие данные также генерируются машинами, датчиками и «интернетом вещей». Информацию получают от смартфонов, умных колонок, лампочек и систем умного дома, видеокамер на улицах, метеоспутников.

Транзакционные данные возникают при покупках, переводах денег, поставках товаров и операциях с банкоматами.

Как обрабатывают большие данные?

Массивы Big Data настолько большие, что простой Excel с ними не справится. Поэтому для работы с ними используют специальное ПО.

Его называют «‎горизонтально масштабируемым‎‎»‎, потому что оно распределяет задачи между несколькими компьютерами, одновременно обрабатывающими информацию. Чем больше машин задействовано в работе, тем выше производительность процесса.

Такое ПО основано на MapReduce, модели параллельных вычислений. Модель работает так:

  • сначала данные фильтруются по условиям, которые задает исследователь, сортируются и распределяются между отдельными компьютерами (узлами);
  • затем узлы параллельно рассчитывают свои блоки данных и передают результат вычислений на следующую итерацию.

MapReduce — не конкретная программа, а скорее алгоритм, с помощью которого можно решить большинство задач обработки больших данных.

Примеры ПО, которое основывается на MapReduce:

  • Hadoop — набор программ с открытым исходным кодом для хранения файлов, планирования и совместной работы с данными. Система разработана так, чтобы при сбое на одном узле нагрузка сразу перераспределялась на другие, не прерывая вычисления.
  • Apache Spark — набор библиотек, которые позволяют выполнять вычисления в оперативной памяти и многократно обращаться к результатам расчетов. Его применяют для решения широкого круга задач, от простой обработки и фильтрации данных до машинного обучения.

Специалисты по большим данным используют оба инструмента: Hadoop для создания инфраструктуры данных и Spark для обработки потоковой информации в реальном времени.

Где применяется аналитика больших данных?

Большие данные нужны в маркетинге, перевозках, автомобилестроении, здравоохранении, науке, сельском хозяйстве и других сферах, в которых можно собрать и обработать нужные массивы информации.

Бизнесу большие данные нужны, чтобы:

  • Оптимизировать процессы — например, крупные банки используют большие данные, чтобы обучать чат-бота — программу, которая заменит живого сотрудника по простым вопросам и при необходимости переключит на специалиста.
  • Делать прогнозы — анализируя большие данные о продажах, компании могут предсказать поведение клиентов и покупательский спрос на товары в зависимости от времени года или ситуации в мире.
  • Строить модели — с помощью анализа данных о прибыли и издержках компания может построить модель для прогнозирования выручки.

Анализ больших данных позволяет не только систематизировать информацию, но и находить неочевидные причинно-следственные связи.

Продажи товаров

Онлайн-маркетплейс Amazon запустил систему рекомендаций товаров, работающую на машинном обучении. Она учитывает не только поведение и предыдущие покупки пользователя, но и время года, ближайшие праздники и остальные факторы. После того как эта система заработала, рекомендации начали генерировать 35% всех продаж сервиса.

В супермаркетах «Лента» с помощью больших данных анализируют информацию о покупках и предлагают персонализированные скидки на товары. К примеру, говорят в компании, система по данным о покупках может понять, что клиент изменил подход к питанию, и начнет предлагать ему подходящие продукты.

Американская сеть Kroger использует большие данные для персонализации скидочных купонов, которые получают покупатели по электронной почте. После того как их сделали индивидуальными, подходящими конкретным покупателям, доля покупок только по ним выросла с 3,7 до 70%.

Найм сотрудников

Крупные компании, в том числе российские, стали прибегать к помощи роботов-рекрутеров, чтобы на начальном этапе поиска сотрудника отсеять тех, кто не заинтересован в вакансии или не подходит под нее. Так, компания Stafory разработала робота Веру, которая сортирует резюме, делает первичный обзвон и выделяет заинтересованных кандидатов. PepsiCo заполнила 10% нужных вакансий только с помощью робота.

Банки

Банки активно используют большие данные. Например, они помогают защищать клиентов от мошенников. Именно с помощью этих технологий обнаруживают аномалии в поведении пользователя, нетипичные для него покупки или переводы. Уже в 2017 году Visa с помощью анализа данных ежегодно предотвращала мошенничества на $2 млрд.

Автомобилестроение

В 2020 году у автоконцерна Toyota возникла проблема: нужно было понять причину большого числа аварий по вине водителей, перепутавших педали газа и тормоза. Компания собрала данные со своих автомобилей, подключенных к интернету, и на их основе определила, как именно люди нажимают на педали.

Оказалось, что сила и скорость давления различаются в зависимости от того, хочет человек затормозить или ускориться. Теперь компания разрабатывает систему, которая будет определять манеру давления на педали во время движения и сбросит скорость автомобиля, если водитель давит на педаль газа, но делает это так, будто хочет затормозить.

Медицина

Американские ученые научились с помощью больших данных определять, как распространяется депрессия. Исследователь Мунмун Де Чаудхури и ее коллеги загрузили в прогностическую модель сообщения из Twitter, Facebook и Reddit с геометками. Сообщения отбирали по словам, которые могут указывать на депрессивное и подавленное состояние. Расчеты совпали с официальными данными.

Госструктуры

Большие данные просто необходимы госструктурам. С их помощью ведется не только статистика, но и слежка за гражданами. Подобные системы есть во многих странах:  известен сервис PRISM, которыми пользуются ФБР и ЦРУ для сбора персональных данных из соцсетей и продуктов Microsoft, Google и Apple. В России информацию о пользователях и телефонных звонках собирает система СОРМ.

Маркетинг

Социальные большие данные помогают группировать пользователей по интересам и персонализировать для них рекламу. Людей ранжируют по возрасту, полу, интересам и месту проживания. Те, кто живут в одном регионе, бывают в одних и тех же местах, смотрят видео и читают статьи на похожие темы, скорее всего, заинтересуются одними и теми же товарами.

При этом регулярно происходят скандалы, связанные с использованием больших данных в маркетинге. Так, в 2018 году стриминговую платформу Netflix обвинили в расизме из-за того, что она показывает пользователям разные постеры фильмов и сериалов в зависимости от их пола и национальности.

Медиа

С помощью анализа больших данных в медиа измеряют аудиторию. В этом случае Big Data может даже повлиять на политику редакции. Так, издание Huffington Post использует систему, которая в режиме реального времени показывает статистику посещений, комментариев и других действий пользователей, а также готовит аналитические отчеты.

Система в Huffington Post оценивает, насколько эффективно заголовки привлекают внимание читателя, разрабатывает методы доставки контента определенным категориям пользователей. Например, выяснилось, что родители чаще читают статьи со смартфона и поздно вечером в будни, после того как уложили детей спать, а по выходным они обычно заняты, — в итоге контент для родителей публикуется на сайте в удобное для них время.

Логистика

Использование больших данных помогает оптимизировать перевозки, сделать доставку быстрее и дешевле. В компании DHL работа с большими данными коснулась так называемой проблемы последней мили, когда необходимость проехать через дворы и найти парковку перед тем, как отдать заказ, съедает в общей сложности 28% от стоимости доставки. В компании стали анализировать «последние мили» с помощью информации с GPS и данных о дорожной обстановке. В результате удалось сократить затраты на топливо и время доставки груза.

Внутри компании большие данные помогают отслеживать качество работы сотрудников, соблюдение контрольных сроков, правильность их действий. Для анализа используют машинные данные, например со сканеров посылок в отделениях, и социальные — отзывы посетителей отделения в приложении, на сайтах и в соцсетях.

Обработка фото

До 2016 года не было технологии нейросетей на мобильных устройствах, это даже считали невозможным. Прорыв в этой области (в том числе благодаря российскому стартапу Prisma) позволяет нам сегодня пользоваться огромным количеством фильтров, стилей и разных эффектов на фотографиях и видео.

Аренда недвижимости

Сервис Airbnb с помощью Big Data изменил поведение пользователей. Однажды выяснилось, что посетители сайта по аренде недвижимости из Азии слишком быстро его покидают и не возвращаются. Оказалось, что они переходят с главной страницы на «Места поблизости» и уходят смотреть фотографии без дальнейшего бронирования.

Компания детально проанализировала поведение пользователей и заменила ссылки в разделе «Места поблизости» на самые популярные направления для путешествий в азиатских странах. В итоге конверсия в бронирования из этой части планеты выросла на 10%.

Кто работает с большими данными?

Три основные профессии в больших данных: дата-инженер, дата-сайентист, аналитик данных.

Дата-сайентисты специализируются на анализе Big Data. Они ищут закономерности, строят модели и на их основе прогнозируют будущие события.

Например, исследователь больших данных может использовать статистику по снятиям денег в банкоматах, чтобы разработать математическую модель для предсказания спроса на наличные. Эта система подскажет инкассаторам, сколько денег и когда привезти в конкретный банкомат.

Чтобы освоить эту профессию, необходимо понимание основ математического анализа и знание языков программирования, например Python или R, а также умение работать с SQL-базами данных.

Курс

Data Scientist с нуля

Вы освоите Python и SQL, познакомитесь с машинным обучением и определитесь со специализацией: Machine Learning, Computer Vision или Natural Language Processing.  Скидка 5% по промокоду BLOG.

Узнать больше

Аналитик данных использует тот же набор инструментов, что и дата-сайентист, но для других целей. Его задачи — делать описательный анализ, интерпретировать и представлять данные в удобной для восприятия форме. Он обрабатывает данные и выдает результат, составляя аналитические отчеты, статистику и прогнозы.

С Big Data также работают и другие специалисты, для которых это не основная сфера работы:

  • дизайнеры интерфейсов, анализирующие данные поведенческих исследований для создания пользовательских интерфейсов;
  • NLP-инженеры, которые разрабатывают программы для чат-ботов и автоматизации колл-центров, анализируя естественный язык;
  • маркетологи-аналитики, которые исследуют массив данных для выстраивания маркетинговой политики и персонализации рекламы;
  • инженеры и программисты на предприятиях, занимающиеся обработкой данных.

Курс

Аналитик данных

Освойте все инструменты, необходимые junior-аналитику и получите востребованную профессию за 6 месяцев. Дополнительная скидка 5% по промокоду BLOG.

Узнать больше

Дата-инженер занимается технической стороной вопроса и первый работает с информацией: организует ее сбор, хранение и первоначальную обработку.

Дата-инженеры помогают исследователям, создавая ПО и алгоритмы для автоматизации задач. Без таких инструментов большие данные были бы бесполезны, так как их объемы невозможно обработать. Для этой профессии важно знание Python и SQL, уметь работать с фреймворками, например со Spark.

Курс

Data Engineer

Курс подходит для тех, кто имеет базовые знания языка Python. За два месяца вы освоите все важные этапы Data Engineering. Дополнительная скидка 5% по промокоду BLOG.

Узнать больше

Александр Кондрашкин о других профессиях, в которых может понадобиться Big Data: «Где-то может и product-менеджер сам сходить в Hadoop-кластер и посчитать что-то несложное, если обладает такими навыками. Наверняка есть множество backend-разработчиков и DevOps-инженеров, которые настраивают хранение и сбор данных от пользователей».

Востребованность больших данных и специалистов по ним

Востребованность больших данных растет: по исследованиям 2020 года, даже при пессимистичном сценарии объем рынка Big Data в России к 2024 году вырастет с 45 млрд до 65 млрд рублей, а при хорошем развитии событий — до 230 млрд.

Компании все чаще прибегают к анализу больших данных, так как те, кто этого не делает, замечают упущенную выгоду: The Bell приводит пример корпорации Caterpillar. В 2014 году ее дистрибьюторы ежегодно упускали от $9 до $18 млрд прибыли только из-за того, что не внедряли технологии обработки Big Data. Теперь 3,5 млн единиц техники компании оборудованы датчиками, которые собирают информацию о ее состоянии и степени износа ключевых деталей, что позволяет лучше управлять затратами на техобслуживание.

Вместе с популярностью больших данных растет запрос и на тех, кто может эффективно с ними работать. В середине 2020 года Академия больших данных MADE от Mail.ru Group и HeadHunter провели исследование и выяснили, что специалисты по анализу данных уже являются одними из самых востребованных на рынке труда в России. За четыре года число вакансий в этой области увеличилось почти в 10 раз.

Более трети вакансий для специалистов по анализу данных (38%) приходится на IT-компании, финансовый сектор (29%) и сферу услуг для бизнеса (9%). В сфере машинного обучения IT-компании публикуют 55% вакансий на рынке, 10% приходит из финансового сектора и 9% — из сферы услуг.

Как начать работать с большими данными?

Проще будет начать, если у вас уже есть понимание алгоритмов и хорошее знание математики. Оксана Дереза была филологом и для нее главной трудностью в Data Science оказалось вспомнить математику и разобраться в алгоритмах, но она много занималась и теперь анализирует данные в исследовательском институте. 

Но если знаний нет, то на курсе SkillFactory «Data Science с нуля» вы получите достаточную математическую подготовку, чтобы работать с большими данными. За год вы научитесь получать данные из веб-источников или по API, визуализировать данные с помощью Pandas и Matplotlib, применять методы математического анализа, линейной алгебры, статистики и теории вероятности для обработки данных и многое другое.

Чтобы стать аналитиком данных, вам пригодится знание Python и SQL — эти навыки очень популярны в вакансиях компаний по поиску соответствующей позиции. На курсе «Аналитик данных» вы получите базу знаний основных инструментов аналитики (от Google-таблиц до Python и Power BI) и закрепите их на тренажерах.

Важно определиться со сферой, в которой вы хотите работать. Студентка SkillFactory Екатерина Карпова, рассказывает, что после обучения ей была важна не должность, а сфера (финтех), поэтому она сначала устроилась консультантом в банк «Тинькофф», а теперь работает там аналитиком.

Курс

Data Science с нуля

Освойте все необходимые инструменты для уровня junior и получите самую востребованную IT-профессию 2021 года.

  • 8 проектов в портфолио;
  • соревнования и хакатоны;
  • помощь в трудоустройстве.

Узнать больше

BLOG +5% скидки

Какие курсы вам подходят

Курс «Data Science»

От 7500 Р/мес

12 мес

Подробнее о курсе

Профессия «Data Scientist»

От 6900 Р/мес

24 мес

Подробнее о курсе

Профессия «Аналитик Данных»

От 5750 Р/мес

6 мес

Подробнее о курсе
Блог SkillFactory
Добавить комментарий